ENVIRONMENTAL PRODUCT DECLARATION

as per /EN 16810/ and as per /ISO 14025/ and /EN 15804/

Owner of the Declaration	ERFMI - European Resilient Flooring Manufacturers' Institute
Programme holder	Institut Bauen und Umwelt e.V. (IBU)
Publisher	Institut Bauen und Umwelt e.V. (IBU)
Declaration number	EPD-ERF-20180185-CCI1-EN
ECO EPD Ref. No.	ECO-0000851
Issue date	05/03/2019
Valid to	04/03/2024

Semi flexible LVT floating floor with mechanical locking according to EN ISO 10582 ERFMI European Resilient Flooring Manufacturers' Institute

www.ibu-epd.com / https://epd-online.com

ERFMI- European Resilient Flooring Manufacturers' Institute

Programme holder

IBU - Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany

Declaration number

EPD-ERF-20180185-CCI1-EN

This declaration is based on the product category rules:

Floor coverings, 02/2018 (PCR checked and approved by the SVR)

Issue date

05/03/2019

Valid to 04/03/2024

Wermanjes

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)

dank Hails

Dr. Alexander Röder (Head of Board IBU)

Product

Product description / Product definition

Resilient floor coverings are an entire product family of flexible flooring solutions available in sheet, tiles and planks. It is classified in heterogeneous or homogeneous composition based on plastics, linoleum, cork or rubber. Resilient floor coverings can provide different functionalities (acoustic, static control, slip resistance, easy maintenance etc.) to match a wide range of domestic, commercial and industrial applications. It is available in an enormous range of patterns and colours fitting with inspiration and decorative needs.

Semi flexible luxury vinyl tiles (LVT) floating floor with mechanical locking according to /EN ISO 10582/ are polyvinyl chloride heterogeneous floor coverings consisting of a wear layer and other compact layers which differ in composition and/or design and can contain reinforcement and are supplied in tile and

Semi flexible LVT floating floor with mechanical locking according to EN **ISO 10582**

Owner of the declaration

ERFMI vzw, European Resilient Flooring Manufacturers' Institute 24, Rue Montoyer B-1000 Brussels

Declared product / declared unit

1m² Semi flexible LVT floating floor with mechanical locking

Scope:

In this EPD semi flexible LVT floating floor with mechanical locking according to EN ISO 10582 are declared. The application of this EPD is restricted printed laminate polyvinyl chloride floor coverings produced by the members of the European Resilient Flooring Manufacturers' Institute (ERFMI). Data are based upon production during 2017 for the European market. Data have been provided by 4 companies of ERFMI which represent 66% of ERFMI members. The production sites are located in Europe and China.

The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification

The standard /EN 15804/ serves as the core PCR Independent verification of the declaration and data according to /ISO 14025:2010/

externally

internally X

Prof. Dr. Birgit Grahl

(Independent verifier appointed by SVR)

plank form with a mechanical locking system for assembly for loose laying

For the placing on the market of the product on the EU/EFTA (with exception of Switzerland) Regulation (EU) No. 305/2011 (CPR) applies. The product needs a Declaration of Performance taking into consideration /EN 14041: 2004/AC 2006 Resilient, textile and laminate floor coverings. Essential characteristics/and the CE-marking.

For the application and use the respective national provisions apply.

Application

According to EN ISO 10874 the area of application for resilient floor coverings is indicated by use classes. The declared product group covers the use classes 23 and 34.

Technical Data

The following table contains the construction data of the declared product group:

Constructional data

Name	Value	Unit
Product thickness	4.1	mm
Surface weight	8.6	kg/m²
Product Form	tiles	-

The data set out in the Declaration of Performance apply.

Base materials / Ancillary materials

The product group has the following composition:

- Additives 1%
- Filler 54%
- Plasticizer 9%
- Pigments <1%
- Polymers (PVC) 26%
- Auxiliaries <1%
- Lacquer 1%

LCA: Calculation rules

Declared Unit

1m² of floor covering.

Declared unit

Name	Value	Unit
Declared unit	1	m ²
Declared unit	8.6	kg/m²
Conversion factor to 1 kg	0.1163	-

The declaration refers to an average product from 6 production sites of ERFMI members. The data have been weighted according to the annual square meters produced by each site. The life cycle impact assessment is conducted based on the vertical average.

System boundary

Type of EPD: cradle to grave

Modules A1-A3 include processes that provide materials and energy input for the system, manufacturing and transport processes up to the factory gate, as well as waste processing.

Module A4 includes transport of the floor covering to the place of installation.

Module A5 includes the production of offcuts and adhesive for the installation of the floor covering, and incineration of offcuts and packaging material.

Module B2 is including provision of cleaning agent, energy and water consumption for the cleaning of the floor covering incl. waste water treatment. The LCA Flooring Recyclate (PVC) 7%

Reference service life

The service lifetime of a floor covering for a certain application on a floor is too widespread to give one common number. For this EPD model the reference service lifetime (RSL) is set to one year. This means that all impacts for the use phase are based on the cleaning and maintenance model for one year. Depending on the area of use based on /EN ISO 10874/, the technical lifetime advised by the manufacturer and the estimated time on the floor by the customer, the service lifetime can be determined. The use phase impacts should be calculated with the foreseen service life to arrive at the total environmental impact /EN 16810/.

ERFMI provides an online tool for the calculation of a specific service life on the ERFMI home page (www.erfmi.com) for the end-user.

results in this EPD are declared for a one-year usage.

Module C1 considers electricity supply for the deconstruction of the flooring.

Module C2 includes transportation of the postconsumer waste to waste processing.

End of life scenarios are declared for:

- 100% incineration in a waste incineration plant (WIP) (Scenario 1, C3/1)
- 100% landfilling (Scenario 2, C4/2)
- 100% recycling according to information from AgPR, (Arbeitsgemeinschaft PVC-Bodenbelag Recycling) (Scenario 3 - for the recycling scenario the end of waste state is reached after removal from the building)

Module D includes potential benefits from all net flows given in module A5 and C3 that leave the product boundary system after having passed the end-of-waste state in the form of recovery and/or recycling potentials. Module D is declared for each scenario separately.

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

As background database /GaBi ts/ is used.

LCA: Scenarios and additional technical information

The following technical information is a basis for the declared modules.

Transport to the construction site (A4)

Name	Value	Unit
Transport distance (truck)	2000	km

3

Capacity utilisation (including empty runs)

Based on the share of floor covering produced in Asia a transport via ship is considered additionally to the truck transport.

85

%

Installation in the building (A5)

Name	Value	Unit
Material loss (installation waste)	4.5	%
Auxiliary (adhesive)	0	kg

Biogenic carbon incorporated in the packaging material is released as CO_2 emissions in module A5.

Maintenance (B2)

Name	Value	Unit
Water consumption	0.003	m ³
Electricity consumption	0.55	kWh
Maintenance cycle (vacuum cleaning	156	number/
& wet cleaning)	100	а
Auxiliary (detergent)	0.04	kg

End of Life (C1-C4)

Name	Value	Unit
Energy recovery [100%, Scenario 1]	8.6	kg
Landfilling [100%, Scenario 2]	8.6	kg
Recycling [100%, Scenario 3]	8.6	kg

Reuse, recovery and/or recycling potentials (D), relevant scenario information

For module D the potential benefits given in module A5 and C3 are declared. For waste incineration combustion in a WIP (R1 > 0.6) with energy recuperation is considered.

4

LCA: Results

5

The results for module B2 refer to a period of one year.

For the calculation of the impact of B2 for a certain service life the values for B2 have to be multiplied by the estimated service life in years.

ERFMI provides an online tool for this calculation on the ERFMI home page (www.erfmi.com) for the end-user. Scenario 1 applies to 100% incineration.

Scenario 2 applies to 100% landfilling.

plice to 100% recyclin Sconario 3 a

DESC	Scenario 3 applies to 100% recycling. DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLARED)																			
	DUCT S		CONST ON PRO STA	RUCTI DCESS	USE STAGE						STAGE END OF LIFE STAGE B						SYSTEM BOUNDARI			EFITS AND OADS OND THE YSTEM
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-	Recovery- Recycling- potential			
A1	A2	A3	A4	A5	B1	B2	B3	В4	B5	B6	B7	C1	C2	C3	C4		D			
Х	X	X	X	Х	MND	X	MNR	MNF	R MNR	MND	MND	Х	X	X	Х		Х			
		OF TH 6 kg/n		- EN\	/IRON	IMENT	AL IM	PAC	T: 1 m ²	semi f	lexible	e LVT	floatir	ng floor	with	mec	hanical			
Param		nit																		
eter	U	nit	A1-A3	4	4	A5	B2		C1	C2	C3	/1	C4/2	D/1	D	/2	D/3			
GWP	[kg C0	O ₂ -Eq.]	12.10	2.	20	1.69	0.28	3	0.01	0.08	16.8	30	0.60	-4.87	-0.	.31	-0.31			
GWP ODP	[kg C([kg CF(O₂-Eq.] C11-Eq.]	12.10 1.31E-9	2. 9 5.22	20 2-14	1.69 6.20E-11	0.28 1.03E-	3 -12	0.01 5.53E-14	0.08 2.17E-15	16.8 5 5.95E	30 E-12 1	0.60 .63E-13	-4.87 -9.20E-12	-0. 2 -6.03	31 8E-13	-0.31 -6.03E-13			
GWP	[kg CC [kg CF([kg S(O ₂ -Eq.]	12.10 1.31E-9 4.39E-2 4.33E-3	2. 2. 5.22 2. 4.3 3. 4.6	20	1.69	0.28	3 -12 -4 -5	0.01 5.53E-14 3.53E-5 3.31E-6	0.08	16.8 5 5.95E 1.48	30 E-12 1 E-2 1	0.60	-4.87	-0. 2 -6.03 -4.8	.31	-0.31 -6.03E-13 -4.83E-4 -5.34E-5			
GWP ODP AP EP POCP	[kg Cf [kg CF([kg St [kg (PC [kg ethe	O ₂ -Eq.] C11-Eq.] O ₂ -Eq.] O₄) ³ -Eq.] ene-Eq.]	12.10 1.31E-9 4.39E-2 4.33E-3 6.13E-3	2. 2. 5.22 2. 4.3 3. 4.6 3. 1.6	20 E-14 3E-2 9E-3 6E-3	1.69 6.20E-11 3.81E-3 4.20E-4 3.17E-4	0.28 1.03E- 7.28E 9.38E 5.93E	3 -12 -4 -5 -5	0.01 5.53E-14 3.53E-5 3.31E-6 2.21E-6	0.08 2.17E-15 1.74E-4 4.39E-5 -5.68E-5	16.8 5 5.95E 1.48 6.54 5 3.43	30 E-12 1 E-2 1 E-4 1 E-4 1	0.60 .63E-13 1.65E-3 1.69E-3 1.81E-4	-4.87 -9.20E-12 -7.48E-3 -8.34E-4 -6.13E-4	-0. 2 -6.03 -4.8 -5.3 -3.9	31 8E-13 3E-4 4E-5 1E-5	-0.31 -6.03E-13 -4.83E-4 -5.34E-5 -3.91E-5			
GWP ODP AP EP POCP ADPE	[kg CC [kg CF([kg SC [kg (PC [kg ethe [kg S	O ₂ -Eq.] C11-Eq.] O ₂ -Eq.] O ₄) ³ -Eq.] ene-Eq.] b-Eq.]	12.10 1.31E-9 4.39E-2 4.33E-3 6.13E-3 4.18E-5	2. 2 4.33 3 4.69 3 1.60 5 1.00	20 2E-14 3E-2 9E-3 6E-3 3E-7	1.69 6.20E-11 3.81E-3 4.20E-4 3.17E-4 2.14E-6	0.28 1.03E- 7.28E 9.38E 5.93E 1.64E	-12 -4 -5 -5 -7	0.01 5.53E-14 3.53E-5 3.31E-6 2.21E-6 6.61E-9	0.08 2.17E-15 1.74E-4 4.39E-5 -5.68E-5 6.53E-9	16.8 5.95E 1.48 6.54 5 3.43 4.87	30 E-12 1 E-2 1 E-4 1 E-4 1 E-4 1 E-6 1	0.60 .63E-13 1.65E-3 1.69E-3 1.81E-4 1.32E-7	-4.87 -9.20E-12 -7.48E-3 -8.34E-4 -6.13E-4 -1.23E-6	-0. 2 -6.03 -4.8 -5.3 -3.9 -7.9	31 3E-13 3E-4 4E-5 1E-5 8E-8	-0.31 -6.03E-13 -4.83E-4 -5.34E-5 -3.91E-5 -7.98E-8			
GWP ODP AP POCP ADPE ADPF Captio	[kg Cf [kg SC [kg SC [kg ethe [kg S [kg S [kg S [kg S] [kg S] [kg S] [kg S] [kg S] [kg S] [kg Cf [kg S [kg S] [kg S [kg S [kg S [kg S [kg S] [kg S [kg S [kg S] [kg S [kg S [kg S] [kg S [kg S] [kg S [kg S] [kg S [kg S] [kg S] [kg S [kg S] [kg S] [kg S [kg S] [kg S] [k] [kg S] [k] [kg S]	O_2 -Eq.] C11-Eq.] O_2 -Eq.] O_4) ³ -Eq.] ene-Eq.] ib-Eq.] AJ] P = Glob. ophicatio	12.10 1.31E-5 4.39E-2 4.33E-3 6.13E-3 4.18E-5 237.00 al warmin on potentia	2. 3. 5.22 4.33 3. 4.60 3. 1.60 5. 1.03 0. 27 g potenti al; POCF	20 E-14 3E-2 9E-3 6E-3 3E-7 38E-7 394 al; ODP 2 = Form for	1.69 6.20E-11 3.81E-3 4.20E-4 3.17E-4 2.14E-6 12.98 P = Depleti nation pote ssil resource	0.28 1.03E- 7.28E 9.38E 5.93E 1.64E 3.36 ion poten ential of tr rces; ADI	3 -12 -5 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	0.01 5.53E-14 3.53E-5 3.31E-6 2.21E-6 6.61E-9 0.13 the stratos	0.08 2.17E-15 1.74E-4 4.39E-5 -5.68E-5 6.53E-9 1.08 pheric oz he photoc letion pote	16.8 5.95E 1.48 6.54 6.54 3.43 20.2 0.1 0 ne layer hemical o ential for	30 E-12 1 E-2 1 E-4 1 E-4 1 E-6 1 20 r; AP = A poxidants fossil res	0.60 .63E-13 1.65E-3 1.69E-3 1.81E-4 1.32E-7 8.77 Acidificatio ; ADPE = sources	-4.87 -9.20E-12 -7.48E-3 -8.34E-4 -6.13E-4 -1.23E-6 -68.93 on potentia	-0. 2 -6.03 -4.8 -5.3 -3.9 -7.90 -7.	31 3E-13 3E-4 4E-5 1E-5 8E-8 31 1 and v potent	-0.31 -6.03E-13 4.83E-4 -5.34E-5 -3.91E-5 -7.98E-8 -4.31 vater; EP = ial for non-			
GWP ODP AP POCP ADPE ADPF Captio	[kg Cf [kg Cf [kg Sc [kg (PC [kg eth [kg Sc [kg Sc [kg Sc [kg Sc [kg Sc [kg Sc [kg Sc [kg Sc [kg Sc [kg Cf [kg Cf [kg Cf [kg Cf [kg Cf [kg Cf [kg Cf [kg Cf [kg Sc [kg Sc [k] Sc [k] Sc [k] Sc [k] Sc [k] Sc [k] Sc [k] Sc [k] Sc	O_2 -Eq.] C11-Eq.] O_2 -Eq.] O_4) ³ -Eq.] ene-Eq.] ib-Eq.] AJ] P = Glob. ophicatio	12.10 1.31E-5 4.39E-2 4.33E-3 6.13E-3 4.18E-5 237.00 al warmin on potentia	2. 3. 5.22 4.33 3. 4.60 3. 1.60 5. 1.03 0. 27 g potenti al; POCF	20 E-14 3E-2 9E-3 5E-3 3E-7 .94 ial; ODP P = Form for	1.69 6.20E-11 3.81E-3 4.20E-4 3.17E-4 2.14E-6 12.98 P = Depleti nation pote ssil resource	0.28 1.03E- 7.28E 9.38E 5.93E 1.64E 3.36 ion poten ential of tr rces; ADI	3 -12 -5 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	0.01 5.53E-14 3.53E-5 3.31E-6 2.21E-6 6.61E-9 0.13 the stratos pheric ozor Abiotic dep	0.08 2.17E-15 1.74E-4 4.39E-5 -5.68E-5 6.53E-9 1.08 pheric oz he photoc letion pote	16.8 5.95E 1.48 6.54 6.54 3.43 20.2 0.1 0 ne layer hemical o ential for	30 E-12 1 E-2 1 E-4 1 E-4 1 E-6 1 20 T, AP = A poxidants fossil res ting fle	0.60 .63E-13 1.65E-3 1.69E-3 1.81E-4 1.32E-7 8.77 Acidificatio ; ADPE = sources	-4.87 -9.20E-12 -7.48E-3 -8.34E-4 -6.13E-4 -1.23E-6 -68.93 on potentia	-0. 2 -6.03 -4.8 -5.3 -3.9 -7.90 -7.	31 E-13 3E-4 4E-5 1E-5 8E-8 31 J and v potent	-0.31 -6.03E-13 4.83E-4 -5.34E-5 -3.91E-5 -7.98E-8 -4.31 vater; EP = ial for non-			
GWP ODP AP EP POCP ADPE ADPF Captio (8.6 k Param PER	[kg CC [kg CF([kg SC [kg ethe [kg ethe [kg ethe [kg ethe [kg ethe [kg m]] [kg ether [kg CD [kg SC [kg CD [kg CD [k] [kg CD [k] [k] [k] [k] [k] [k] [k] [k] [k] [k]	O ₂ -Eq.] C11-Eq.] O ₂ -Eq.] O ₄) ³ -Eq.] b-Eq.] AJ] P = Glob ophicatic OF TH	12.10 1.31E-5 4.39E-2 4.32E-2 6.13E-5 4.18E-5 237.00 al warmin on potentia IE LCA A1-A3 20.35	2 2 4.33 2 4.33 3 4.63 3 1.66 5 1.00 5 1.00 5 2.22 2 4.33 3 4.63 3 4.63 5 1.00 5 1.	20 E-14 3E-2 9E-3 3E-7 .94 al; ODP 2 = Form fo: SOUR	1.69 6.20E-11 3.81E-3 4.20E-4 3.17E-4 2.14E-6 12.98 • Depletination pote ssil resour CE US A5 4.14	0.28 1.03E- 7.28E 9.38E 5.93E 1.64E 3.36 ion poten ential of t rcces; ADI E: 1 m B2 1.59	3 -12 -5 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	0.01 5.53E-14 3.53E-5 2.21E-6 6.61E-9 0.13 the stratos pheric ozor Abiotic dep mi flexi C1 0.09	0.08 2.17E-15 1.74E-4 4.39E-5 -5.68E-5 6.53E-9 1.08 pheric oz le photoc letion pote ble LV	16.3 5 5.95E 1.48 6.544 6 3.433 4.87 20.2 cone layer hemical of ential for T float C3/* 8.05	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.60 .63E-13 1.65E-3 1.81E-4 1.32E-7 8.77 ckidificatic ; ADPE = sources DOR wi	4.87 -9.20E-12 -7.48E-3 -8.34E-4 -6.13E-4 -1.23E-6 -68.93 on potentia Abiotic de th mecl D/1 -14.28	-0. 2 -6.03 -4.8 -5.3 -3.9 -7.9	31 BE-13 3E-4 4E-5 1E-5 BE-8 31 1 and v potent al 10 /2	-0.31 -6.03E-13 -4.83E-4 -5.34E-5 -3.91E-5 -7.98E-8 -4.31 vater; EP = ial for non- cking D/3 -0.94			
GWP ODP AP EP POCP ADPE ADPF Captio (8.6 k Param PER PER	[kg CC] [kg CF] [kg CG]	O₂-Eq.] C11-Eq.] O₂-Eq.] D₂-Eq.] b-Eq.] b-Eq.] A.] P = Glob ophicatic OF TH Unit [MJ] [MJ]	12.10 1.31E-5 4.39E-2 4.39E-2 6.13E-5 6.13E-5 237.00 al warmin on potentia IE LCA A1-A3 20.35 4.30	2. 3. 5.22 2. 4.33 3. 4.63 3. 1.60 5. 1.00 0. 277 g potential; POCF - RES A4 0.66 0.000	20 E-14 3E-2 9E-3 6E-3 6E-3 3E-7 .94 al; ODP 2 = Form fo: SOUR 30 30 30 30 30 30 30 30 30 30	1.69 6.20E-11 3.81E-3 4.20E-4 3.17E-4 2.14E-6 12.98 P = Depletination potr ssil resour CE US A5 4.14 -2.60	0.28 1.03E- 7.28E 9.38E 5.93E 1.64E 3.36 ion poten ential of tr rcces; ADI E: 1 m B2 1.59 0.00	3 -12 -5 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	0.01 5.53E-14 3.53E-5 3.31E-6 6.61E-9 0.13 the stratos pheric ozor Abiotic dep mi flexi 0.09 0.00	0.08 2.17E-15 1.74E-4 4.39E-5 5.68E-5 6.53E-9 1.08 pheric ozi e photoc letion pote ble LV C2 0.06 0.00	16.1 5 5.95E 1.48 6.54 1.48 6.54 3.43 4.87 20.1 20.1 one layer hemical (ential for transition) cential for T float C3/* 8.05 4.30 4.30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.60 .63E-13 1.65E-3 1.69E-3 1.81E-4 1.32E-7 8.77 xcidificatic x	4.87 -9.20E-12 -7.48E-3 -8.34E-4 -6.13E-4 -1.23E-6 -68.93 on potentia -Abiotic de th mecl D/1 -14.28 0.00	-0.2 -6.03 -4.8 -5.3 -3.9 -7.9 -4.4 al of lance epletion nanic D. -0.0	31 SE-13 3E-4 4E-5 1E-5 BE-8 31 1 and v potent al 10 72 94 00	-0.31 -6.03E-13 -4.83E-4 -5.34E-5 -7.98E-8 -4.31 vater; EP = ial for non- cking D/3 -0.94 0.00			
GWP ODP AP EP POCP ADPE ADPE Captio RESU (8.6 k Param PER PER	[kg Cf [kg CF([kg Sc [kg Rethend [kg Sc [kg Cf([kg Cf(<t< td=""><td>O₂_Eq.] C11-Eq.] O₂_Eq.] D₂_Eq.] D₂_Eq.] bi-Eq.] bi-Eq.] AJ] P = Glob ophicatic OF TH Unit [MJ] [MJ]</td><td>12.10 1.31E-4 4.39E-2 4.39E-2 6.13E-2 237.00 al warmin n potentia IE LCA A1-A3 20.35 4.30 24.65</td><td>2 2 4.3:3 3 4.6:6 3 1.6:1 5 1.0:0 9 potential; POCF - RES A4 0.6:6 0.0:0 0.6:6</td><td>20 22 22 22 22 22 23 24 23 24 24 24 24 24 24 24 24 24 24</td><td>1.69 6.20E-11 3.81E-3 4.20E-4 3.17E-4 2.14E-6 12.98 P = Depleti ation pote ssil resour CE US A5 4.14 -2.60 1.54</td><td>0.28 1.03E- 7.28E 9.38E 5.93E 1.64E 3.36 ion poten ential of tr rcces; ADI E: 1 m B2 1.59 0.00 1.59</td><td>3 -12 -5 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7</td><td>0.01 5.53E-14 3.53E-5 3.31E-6 6.61E-9 0.13 the stratos pheric ozor Abiotic dep mi flexi C1 0.09 0.00 0.09</td><td>0.08 2.17E-15 1.74E-4 4.39E-5 5.68E-5 6.53E-9 1.08 pheric oz he photoc letion pote ble LV C2 0.06 0.00 0.06</td><td>16.1 5 5.95E 1.48 6.54 3.43 4.87 20.1 20.1 one layer hemical dential for T float 6.54 8.05 -4.33 3.75 -4.37</td><td>30 E-12 1 E-2 1 E-4 1 E-4 1 E-6 1 20 T, AP = A poxidants fossil res ing flo</td><td>0.60 .63E-13 1.65E-3 1.69E-3 1.89E-3 1.89E-3 1.81E-4 1.32E-7 8.77 8.77 8.77 8.77 8.77 0.00E = 0.68 0.00 0.68</td><td>4.87 -9.20E-12 -7.48E-3 8.34E-4 -6.13E-4 -6.13E-4 -1.23E-6 -68.93 on potentia Abiotic de th mecl D/1 -14.28 0.00 -14.28</td><td>-0.2 -6.03 -4.8 -5.3 -3.9 -7.9 -7.9 -4. -4. -1 of land spletion nanic Danic Danic -0.0</td><td>31 3E-13 3E-4 4E-5 1E-5 8E-8 31 1 and v potent al lo 12 94 90 94</td><td>-0.31 -6.03E-13 -4.83E-4 -5.34E-5 -7.98E-8 -4.31 vater; EP = ial for non- cking D/3 -0.94 0.00 -0.94</td></t<>	O₂_Eq.] C11-Eq.] O₂_Eq.] D₂_Eq.] D₂_Eq.] bi-Eq.] bi-Eq.] AJ] P = Glob ophicatic OF TH Unit [MJ] [MJ]	12.10 1.31E-4 4.39E-2 4.39E-2 6.13E-2 237.00 al warmin n potentia IE LCA A1-A3 20.35 4.30 24.65	2 2 4.3:3 3 4.6:6 3 1.6:1 5 1.0:0 9 potential; POCF - RES A4 0.6:6 0.0:0 0.6:6	20 22 22 22 22 22 23 24 23 24 24 24 24 24 24 24 24 24 24	1.69 6.20E-11 3.81E-3 4.20E-4 3.17E-4 2.14E-6 12.98 P = Depleti ation pote ssil resour CE US A5 4.14 -2.60 1.54	0.28 1.03E- 7.28E 9.38E 5.93E 1.64E 3.36 ion poten ential of tr rcces; ADI E: 1 m B2 1.59 0.00 1.59	3 -12 -5 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	0.01 5.53E-14 3.53E-5 3.31E-6 6.61E-9 0.13 the stratos pheric ozor Abiotic dep mi flexi C1 0.09 0.00 0.09	0.08 2.17E-15 1.74E-4 4.39E-5 5.68E-5 6.53E-9 1.08 pheric oz he photoc letion pote ble LV C2 0.06 0.00 0.06	16.1 5 5.95E 1.48 6.54 3.43 4.87 20.1 20.1 one layer hemical dential for T float 6.54 8.05 -4.33 3.75 -4.37	30 E-12 1 E-2 1 E-4 1 E-4 1 E-6 1 20 T, AP = A poxidants fossil res ing flo	0.60 .63E-13 1.65E-3 1.69E-3 1.89E-3 1.89E-3 1.81E-4 1.32E-7 8.77 8.77 8.77 8.77 8.77 0.00E = 0.68 0.00 0.68	4.87 -9.20E-12 -7.48E-3 8.34E-4 -6.13E-4 -6.13E-4 -1.23E-6 -68.93 on potentia Abiotic de th mecl D/1 -14.28 0.00 -14.28	-0.2 -6.03 -4.8 -5.3 -3.9 -7.9 -7.9 -4. -4. -1 of land spletion nanic Danic Danic -0.0	31 3E-13 3E-4 4E-5 1E-5 8E-8 31 1 and v potent al lo 12 94 90 94	-0.31 -6.03E-13 -4.83E-4 -5.34E-5 -7.98E-8 -4.31 vater; EP = ial for non- cking D/3 -0.94 0.00 -0.94			
GWP ODP AP EP POCP ADPE ADPF Captio (8.6 k Param PER PER	[kg Cf [kg CF([kg Sc [kg Rethend [kg Sc [kg Cf([kg Sc([kg Sc(<t< td=""><td>O₂-Eq.] C11-Eq.] O₂-Eq.] D₂-Eq.] b-Eq.] b-Eq.] A.] P = Glob ophicatic OF TH Unit [MJ] [MJ]</td><td>12.10 1.31E-5 4.39E-2 4.32E-2 6.13E-2 4.3E-5 237.00 al warmin on potentia IE LCA A1-A3 20.35 4.30</td><td>2. 3. 5.22 2. 4.33 3. 4.63 3. 1.60 5. 1.00 0. 277 g potential; POCF - RES A4 0.66 0.000</td><td>20 22 22 22 22 22 22 23 24 23 24 24 24 24 24 24 24 24 24 24</td><td>1.69 6.20E-11 3.81E-3 4.20E-4 3.17E-4 2.14E-6 12.98 P = Depletination potessil resource CE US A5 4.14 -2.60</td><td>0.28 1.03E- 7.28E 9.38E 5.93E 1.64E 3.36 ion poten ential of tr rcces; ADI E: 1 m B2 1.59 0.00</td><td>3 -12 -5 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7</td><td>0.01 5.53E-14 3.53E-5 3.31E-6 6.61E-9 0.13 the stratos pheric ozor Abiotic dep mi flexi 0.09 0.00</td><td>0.08 2.17E-15 1.74E-4 4.39E-5 5.68E-5 6.53E-9 1.08 pheric ozi e photoc letion pote ble LV C2 0.06 0.00</td><td>16.1 5 5.95E 1.48 6.54 1.48 6.54 3.43 4.87 20.1 20.1 one layer hemical (ential for transition) cential for T float C3/* 8.05 4.30 4.30</td><td>30 E-12 E-2 E-2 T E-4 T E-4 T E-6 T C C C C C C C C C C C C C</td><td>0.60 .63E-13 1.65E-3 1.69E-3 1.81E-4 1.32E-7 8.77 xcidificatic x</td><td>4.87 -9.20E-12 -7.48E-3 -8.34E-4 -6.13E-4 -1.23E-6 -68.93 on potentia -Abiotic de th mecl D/1 -14.28 0.00</td><td>-0.2 -6.03 -4.8 -5.3 -3.9 -7.9 -4.4 al of lance epletion nanic D. -0.0</td><td>31 E-13 3E-4 4E-5 1E-5 8E-8 31 and v potent al loo 2 94 00 94 33 4</td><td>-0.31 -6.03E-13 -4.83E-4 -5.34E-5 -7.98E-8 -4.31 vater; EP = ial for non- cking D/3 -0.94 0.00</td></t<>	O₂-Eq.] C11-Eq.] O₂-Eq.] D₂-Eq.] b-Eq.] b-Eq.] A.] P = Glob ophicatic OF TH Unit [MJ] [MJ]	12.10 1.31E-5 4.39E-2 4.32E-2 6.13E-2 4.3E-5 237.00 al warmin on potentia IE LCA A1-A3 20.35 4.30	2. 3. 5.22 2. 4.33 3. 4.63 3. 1.60 5. 1.00 0. 277 g potential; POCF - RES A4 0.66 0.000	20 22 22 22 22 22 22 23 24 23 24 24 24 24 24 24 24 24 24 24	1.69 6.20E-11 3.81E-3 4.20E-4 3.17E-4 2.14E-6 12.98 P = Depletination potessil resource CE US A5 4.14 -2.60	0.28 1.03E- 7.28E 9.38E 5.93E 1.64E 3.36 ion poten ential of tr rcces; ADI E: 1 m B2 1.59 0.00	3 -12 -5 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	0.01 5.53E-14 3.53E-5 3.31E-6 6.61E-9 0.13 the stratos pheric ozor Abiotic dep mi flexi 0.09 0.00	0.08 2.17E-15 1.74E-4 4.39E-5 5.68E-5 6.53E-9 1.08 pheric ozi e photoc letion pote ble LV C2 0.06 0.00	16.1 5 5.95E 1.48 6.54 1.48 6.54 3.43 4.87 20.1 20.1 one layer hemical (ential for transition) cential for T float C3/* 8.05 4.30 4.30	30 E-12 E-2 E-2 T E-4 T E-4 T E-6 T C C C C C C C C C C C C C	0.60 .63E-13 1.65E-3 1.69E-3 1.81E-4 1.32E-7 8.77 xcidificatic x	4.87 -9.20E-12 -7.48E-3 -8.34E-4 -6.13E-4 -1.23E-6 -68.93 on potentia -Abiotic de th mecl D/1 -14.28 0.00	-0.2 -6.03 -4.8 -5.3 -3.9 -7.9 -4.4 al of lance epletion nanic D. -0.0	31 E-13 3E-4 4E-5 1E-5 8E-8 31 and v potent al loo 2 94 00 94 33 4	-0.31 -6.03E-13 -4.83E-4 -5.34E-5 -7.98E-8 -4.31 vater; EP = ial for non- cking D/3 -0.94 0.00			

SM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.60 [kg] RSF [MJ] IND NRSF [MJ] IND FW 9.21E-2 1.23E-3 4.82E-3 2.47E-3 1.16E-4 1.10E-4 4.09E-2 -2.34E-5 -1.95E-2 -1.28E--1.28E-3 [m³] PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh Caption

water

	RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: 1 m² semi flexible LVT floating floor with mechanical locking (8.6 kg/m²)											
Paramete	r Unit	A1-A3	A4	A5	B2	C1	C2	C3/1	C4/2	D/1	D/2	D/3
HWD	[kg]	7.89E-6	6.45E-7	4.11E-7	2.43E-9	1.07E-10	6.28E-8	1.40E-7	3.89E-8	-3.38E-8	-2.14E-9	-2.14E-9
NHWD	[kg]	3.56E-1	1.04E-3	3.59E-1	8.38E-3	1.60E-4	9.10E-5	7.58E+0	8.59E+0	-3.32E-2	-2.15E-3	-2.15E-3
RWD	[kg]	6.08E-3	3.55E-5	3.80E-4	7.02E-4	3.77E-5	1.49E-6	8.75E-4	1.29E-4	-6.27E-3	-4.11E-4	-4.11E-4
CRU	[kg]	IND	IND	IND	IND	IND	IND	IND	IND	IND	IND	IND
MFR	[kg]	IND	IND	IND	IND	IND	IND	IND	IND	IND	IND	8.60
MER	[kg]	IND	IND	IND	IND	IND	IND	IND	IND	8.60	IND	IND
EEE	[MJ]	IND	IND	0.81	IND	IND	IND	18.00	IND	IND	IND	IND
EET	[MJ]	IND	IND	1.92	IND	IND	IND	42.70	IND	IND	IND	IND
Caption		zardous wa se; MFR = N					ergy recove					

/IBU 2016/

IBU (2016): General Programme Instructions for the Preparation of EPDs at the Institut Bauen und Umwelt e.V., Version 1.1 Institut Bauen und Umwelt e.V., Berlin.

www.ibu-epd.de

/ISO 14025/

DIN EN /ISO 14025:2011-10/, Environmental labels and declarations — Type III environmental declarations — Principles and procedures

/EN 15804/

/EN 15804:2012-04+A1 2013/, Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

/PCR 2017, Part A/

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report. 04/2017 www.bau-umwelt.de

/PCR 2018, Part B/

6

Institut Bauen und Umwelt e.V., Berlin (pub.): Product

Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part B: Requirements on the EPD for floorcoverings, Institut Bauen und Umwelt e.V., www.bau-umwelt.com, 02/2018

/EN 16810/

EN 16810: Resilient, textile and laminate floor coverings - Environmental product declarations -Product category rules, May 2017

/EN ISO 10582/

EN ISO 10582: Resilient floor coverings -Heterogeneous poly(vinyl chloride) floor coverings – Specification

/EN ISO 10874/

EN ISO 10874: Resilient, textile and laminate floor coverings - Classification

/EN ISO 14041/

EN ISO 14041: Health, safety and energy saving requirements; EN 14041: Resilient, textile and laminate floor coverings - Essential characteristics

/GaBi ts/

GaBi ts dataset documentation for the software-system and databases, LBP, University of Stuttgart and thinkstep, Leinfelden-Echterdingen, 2017 (http://documentation.gabi-software.com/)

Institut Bauen und Umwelt e.V.	Publisher Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 3087748- 0 +49 (0)30 3087748- 29 info@ibu-epd.com www.ibu-epd.com
Institut Bauen und Umwelt e.V.	Programme holder Institut Bauen und Umwelt e.V. Panoramastr 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 - 3087748- 0 +49 (0)30 - 3087748 - 29 info@ibu-epd.com www.ibu-epd.com
thinkstep	Author of the Life Cycle Assessment thinkstep AG Hauptstrasse 111- 113 70771 Leinfelden-Echterdingen Germany	Tel Fax Mail Web	+49 711 341817-0 +49 711 341817-25 info@thinkstep.com http://www.thinkstep.com
ERFMI EUROPEAN RESILIENT FLOORING MANUFACTURERS'INSTITUTE	Owner of the Declaration ERFMI vzw, European Resilient Flooring Manufacturers' Institute Rue Montoyer 24 1000 Brussels Belgium	Tel Fax Mail Web	+ 32 2 2 87 08 72 info@erfmi.com www.erfmi.com